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ABSTRACT

This paper describes a regression estimator which builds an the

investigation of the covariance structure in the full space of

explanatory variables and response variable. It is robust since it

down weights outlying observations. A comparison to other robust

estimators is included.
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1. INTRODUCTION .--

In recent years a variety of estimators for regression

parameters have been proposed. The driving force behind this kind

of research is the non-robustness of the ordinary least squares

(OLS) estimator, Just as in the case of location estimation the OLS

solution is unduly influenced by departures from the Ousuall model

assumptions. Two different approaches to robustification have been

proposed. The first one is due to Huber (1973) (see also Mosteller

and Tukey (1977)) and works by OHuberizing" residuals. The second

one is based on llampel's work (1974) and due to Krasker and Welsch

(1982). These methods bound the "influence" on the estimated

parameter vector.

In this paper we will describe an approach to the regression

problem which is based on covariance estimation. Instead of

attacking the problem of estimating the regression parameters

directly as solutions to some "normal equation", we will view the -

problem in a larger context and try to summarize what we learn from

the data in an estimated covariance matrix which contains all the

information we need. This approach has the advantage that the

response variable and the explanatory variables are treated

symmetrically. We can therefore compute any of the possible I

regressions -- i.e. any choice of response -- in a single run

without having to recalculate weights.

* ** .* *~** -. C . C. ~ . . '%~ ***t, * *,*. **.... * .-.. ...
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In Section 2 we will give the formulas and discuss one

particular estimator based on an affine equivariant covariance

estimator. Section 3 contains a (limited) comparison with other

robust regression estimators through asymptotics and experimental

sampling.

2. ROBUST REGRESSION THROUGH ROBUST COVARIANCES

2.1 DEFINITION OF THE ESTIMATOR

Let zi' (xilyi). iol,...,In be n vectors in R P+1 which are

created by n independent observations from the stochastic model

Y AI'X + E (2.1)

with fixed, unknown regression parameter a s RP, random carrier

Is RP and random error E independent of the carrier.

In order to describe the probability structure in (2.1) two

distributions are needed. First the error distribution (e/) and

second the carrier distribution Go. Together with the independence

assumption in (2.1) these two determine the distribution of Z'

(I'.Y). As we have indicated there is at least one more parameter

of primary importance, namely the 'scale' a in our error

distribution. All of the bounded influence research is taking place

in a model like (2.1).

The classical solution to the inference problems posed by

(2.1) is based on the principle of least squares. In recent years

several alternative robust estimators b of p have been proposed.

''-



They all can be conveniently described by 'normal equations*:

I *i

12]1 x, V(- 0 Huber (1973).
imi a

Here A Is As auzillary Or simultaneous estimate of the error

scale' and V0) is a somewhat arbitrary function which is usually

chosen in such a way that the efficiency at a central model like

NO 104( is high.

n r
(31 1w 1 x~ (.. 0 Mallows (1975).

Here wi is a weight which depends on zi(and possibly all the other

[41) wi zi (- 0 Schweppe (1975).
i1 aw

This form is optimal with respect to the heuristic notion of

bounded influence (Kampel (1974) and [1rasker and Welsch (1982)). A

review of these estimators can be found in Maronna, Dustos and

Yohai (1979).

Ell gives the ordinary least squares estimator (OLS), [21
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corresponds to the classical approach to robust regression and

there are two popular choices for the ly-function:

(i) q~i) - yk~x) -max(-k~min(kx))

(ii) jpWi - bsqk(z) - /k (1 - (z/k)2)2 if -k~tziSk

= 0 otherwise

The second one is preferable since it gives excellent protection

against heavy-tailed error distributions. (31 and (41 are bounded

Influence estimators (see empel (1974)). Asymptotic optimality

theory tells us that estimators of the form [4] are preferable.

Dividing and multiplying each term in the sun by ri/(swi) we get

a am
14*1 x 0

I r I

5w.

which we immediately recognize as the normal equation of a weighted

least squares problem. The optimal weights are of the form

r

-1 -l/
where tek) is as in (i) above and wi -(xi S xi / (S an

estimated covariance matrix of the carriers).

The theory behind this statement can be found in [rasker and Welsch

(1982).
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We have started this section by introducing the vectors zi .

1p+1 which we Set by joining the carriers z i to the observations

yi. Since regression deals with the linear dependence between these

two elements it is quite natural to summarize our data z 1a...,z n at

a first stage by a covariance matrix and then extract the specific

information we are primarely interested in-- about I and -- at

the second stage.

Remark: To implement the above program it seems advantageous to

take out the constant term in our regression model. This term

corresponds to a carrier identically equal to I and if we allow for .

it, we will be in the rather special position that all vectors zi
+1

lie in a p-dimensional subspace of 1p 1 . The natural way to proceed

is to estimate the constant term via simultaneous location

estimation. This way our target will be the value of the regression

function at a central carrier value. The formulas we will present

are all written for the case where we do not estimate location.

These formulas can, however, easily be modified.

Let us define a robust variance-covariance matrix W* through

the implicit equation

1 nZ i Z i zif W (2.2)

n il i'i "

where no is a weight function such that W is Fisher consistent at

a multivariate Gaussian model. Such N-estimators of covariance

, .- ,o
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matrices are discussed and examined in Marona (1976) (see also

luber (1981)). Now we partition W

where V isthe pip covariance matrix of the carriers. c isthe

pxi vector of carrier-response cross terms and e* is the total

variance of the response. In analogy to the OLS-case we finally put

estimated parameter b V 1- c

and estimated error variance s a bV b (2.3)

If we now took back we realize that the system of equations (2.2)

* is equivalent to

-~ n

in 2 2
w wr, a (2.4)

in

ni- I x V where

the weights are wi u(zi'I -1 zi) -u(zi'V 1 1i + r12/32) and ri

=yi - Zi'b.

proof: In order to get (2.4) from (2.2) we have to partition.

according to the blocks of V. B.S.
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V w. y. X. c =V b -Iw. x. x. b

in

- v z. (x b), which yields the first equation in
ni-I

(2.4).

Remarks:

(1) From (2.4) we immediately infer that in the special case where

o .() 1 we are almost back at the usual OLS estimates for

anda2

(2) It would be of interest for the sake of high breakdown (see

Huber (1981)) to estimate the covariance matrix via a high

breakdown estimator (Donoho and uber (1983) and Stahel(1981)). At

the moment this does not seem to be practical, but we nevertheless

want to point out this important possibility. We plan to report our

results on an M-estimator approach as in (2.2), hoping that they

will be helpful.

The solution V in (2.2). i.e. the estimated covariance matrix.

satisf ies a very broad equivariance relation. If we transform the

data linearly 7, Azill,., the covariance matrix will be

transformed as

S( .. A W (Zr, .... z) A' (2.5)

(affine e"ivariance).

The parameters of interest in (2.1) are and a. The

equvariance relations we might wish to impose on an estimator of

these parameters are:

..........................
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(i) = q(y + y'xi): Ti - xj i1l....,n-4

( i(b(yl,. Yn) + Y) and

s(71* .... 17n) 11 s(yl ..... Yn) -.

(regression equivariance)

and (2.6)

(ii) yi = M M x i il ..... n-

b(71.... 17) M b- y My,... yn) and

s111 ..... n)= s(y 1, ... yn)

(carrier equivariance).

Regression equivariance means that an estimator behaves

reasonably if we add an exactly linear function of the carriers to

the response. The carriers are viewed as fixed and our answer b is

always defined in relation to them. Carrier equivariance is quite a

different concept. If the parametrization of our model (2.1) is

changed in a linear fashion, it then makes sense to use the inverse

transformation on the parameters.

The importance of (ii) lies in the fact that by transforming

our parametrization we can sometimes get parameters which we can

estimate better, i.e. with decreased variability. Carrier

equivariance lets us move between these different parametrizations

without inconsistencies.

* ,'-', •

-So

. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .
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It is easily seen that affine equivariance (2.5) of our

covariance estimator is a sufficient condition to ensure (2.6).

Proof:

!I
Put A [ J or A in (2.5).

Tly T 0 1

Remark: The robust estimators described at the beginning are most

easily described as solutions to a weighted least squares scheme

where the weights have to be found iteratively. It is easily seen

that regression equivariance and carrier equivariance are obtained

in the case where the final weights are invariant under the

transformations given in (2.6). Quantities which fulfill this

invariance requirement are standardized residuals ri/s and squared

standardized distances in the carrier space (xi'Ve-lxi), where s is

a scale equivariant function of the residuals and V is an affine

equivariant function of the carriers. In the case of the classical

Huber estimator the final weights only depends on ri/s. This

estimator -- fully iterated -- is therefore equivariant. If we use

a few-step version, i.e. we do not fully iterate but rather use a

pre-fixed number of steps in some iteration scheme, the resulting

estimator will not be equivariant but hopefully nearly so.

The Kraser-Welsch estimator is equivariant as well. Its weights

depend on the product of standardized residuals times standardized

carrier distance. The Mallows estimator finally will be equivariant

if we are careful in the choice of carrier weights -- they should

T . . . . . .. . .. .. .. .. . .. . . .. . . .. , .. . . .'. . . ... . . .. .. . . . . ... ..... . . . .. .. . i

"."",""-"". ". . "" . ". "" "" "" "" " .'" "'. -" -''-''-''-.'-.'-.''.' j-,''.",'-,". '%\ . ''"'".- ' ', ,"'.- . L . ' ' '*.T'- .. ,
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only depend on the standardized carrier distances.

2.2. ASYMPTOTIC PROPERTIES OF THE REGRESSION ESTIMATOR (2.3)

In this subsection we want to discuss the asymptotic properties

of a regression estimator defined through a covariance M-estimator

(2.2). We saw in (2.4) that it corresponds to a weighted least

squares estimator whose weights depend on the sum of the squared

standardized residual and the squared standardized carrier

distance. Maronna (1976) develops the asymptotic theory for

covariance M-estimators. We plan to use these results and to look

what happens if we apply (2.3). But first let us examine the

influence function (see Hampel (1974)).

In order to simplify the formulas we will first consider the

case where the carrier distribution Go (see beginning of Section

2) is symmetric with respect to each coordinate, i.e. the 2P "

vectors (+z1 ..... z) for all possible choices of signs are

identically distributed with distribution Go. If in addition the

error distribution H(x/a) is symmetric the influence on the jth

component b. (j l....,p) in (2.3) is

IFb.,GH U99Y) u(do )r (2.7)

where d 2 = (x*',y o) W-1 (G.H) (zx',y o )' and r, = yo - (GH)x,.

and aj - Vjj + EG,S [u'(d 2 )xz 2 r 2 2/o2] (note that xi refers to the

jth component of x).

- - - . '



In order to understand this formula we have to remember that

the influence function is an asymptotic 0tooL" and that therefore

the population Values of our estimators appear in the formula.

V(GR) is defined through

W(G,R) -EG Wud 2 (x,)Cx,) d 2 Cx .y) I'( ,.y) )

and can be partitioned just as W (see (2.3)). V idenotes the jth

diagonal element of WCG,H).

Remarks:

(1) If we do not impose the symmetry requirements on the carrier

distribution Go the influence on the vector b in (2.3) is

IF (2 -1
IFb.G,B (x,.yo) u nd, r, A o

where A ik = ik + EGH [u'(d) 2r1, Zilki.

Proof: Our estimator can be put into the usual N-estimator form, Io

i.e. we estimate the parameter a , V) based on the data

Z1 , ... DZ. via tp =~t 0. Now we can apply the standard formulas

to get influence function (see Huber (1981)). Our Ik-function splits

into three parts according to

=e(Z4 U~d2 ) x r

102 (z.1) - u(d2)r

and 1P3(Z.1) - u(d2 ) Ix, V.

The matrix D -EG, 1 1610/64 has the block form
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-D - [

where A is the matrix which turns up In the influence for b. The

above block form is ensured if only the error distribution H(x/a)

is symmetric around 0.

(2) The influence function for a general class of robust regression

estimators can be found in Maronna, Bustos and Yohai (1979).

(3) The influence function gives a description of the bias '. ,

introduced by infinitesimal perturbations of an ideal model. It

turns out that a bounded influence is desirable (see Nampel

(1971)). Under the strong symmetry conditions we have

sup ([IF (z) - const(G.H) sup (cu(C)).
z b.2 c 0 2.c

Proof: see (2.7) and note that W(G,H) = diag(w,....,wpa).

Our estimator ((2.2) and (2.3)) has therefore a bounded influence

function provided the weight function u(c) goes to zero fast enough

as c gets large. This is not surprising since the weight depends on

both the size of the residual as well as the distance form the

center in carrier space.

The asymptotic normality of our estimates can be proved using

a standard result due to Huber (1967). The proof follows the same

. . .. .



steps as Maronna (1976). Unfortunately asymptotic normality is only

proved under the extremely stringent condition that the joint

distribution of x and y is spherically symmetric up to an affine

transformation. This is an assumption which can possibly be

relaxed, but another proof is required. The other regularity )

conditions needed are boundedness and monotonicity conditions on

u(c) and cu(c), respectively. Under all of these assumptions it is

true that the estimate b. (see (2.3)) is asymptotically Gaussian

with mean Aj and asymptotic variance

2 2 2 2
E [u2(d) r x.
G-H (see (2.7)),

.. 1

the components of b furthermore are independent.

Maronna (1976) showed that the breakdown properties of

covariance estimates of the form (2.2) are not encouraging. As the

dimensionality of the z-space increases, i.e. if we add more

carriers, the breakdown point of W (see (2.2)) is necessarily

decreasing like 1/(l+dimensionality). The regression estimator.-

(2.3) which is based on has the same breakdown point. If we add

a contamination along an arbitray regression line and let the

contaminating carrier value go to infinity the estimator breaks

down.

We have discussed above two types of properties. First the

behavior at the presumed central model which is described by the

asymptotic parameters. And second the breakdown point which is a

............................................. ,
- - . . . . .
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simple indicator for the behavior under severe deviations from the

central model. The asymptotic influence curve stands somewhat ,

inbetween. On one hand it provides a decompositon of the asymptotic

variance at the central model, on the other hand it is useful as an

indicator for the behavior under perturbations of the linearity

assumption.

In the next section we will use the formulas derived above to

give us numerical values. But these asymptotic findings are of

course of secondary importance. What we really need to know is the

small sample behavior. To see how well asymptotics predicts the

corresponding small sample values some simulation results for

samples of size 20 are included.

3. COMPARISON OF REGRESSION ESTIMATORS

In order to compare the various estimators discussed in

Section 2 we plan to do a small Monte Carlo study. To further

simplify the questions involved we will restrict attention to the

simple case p-l. i.e. to the model -

i = zi + ai ii ..... n (3.1)

with random carriers (independent of the errors). For model (3.1)

the questions of how to handle a constant term does not appear and

(2.2) together with (2.3) defines a reasonable estimator of P. To

fully specify this estimator we need to define a weight function

u(c). A somewhat typical choice is

. . . . . . . . . . . . . .
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u~c) tk (C) (3.2)

where Vk(c) max(-k~min(c~k)) denotes Huber's f-function. The

justification for this paricular form of a weight function lies in

the fact that near the Gaussian error model a good behavior of the

asymptotic efficiency can be expected. The weight function is-

chosen in such a way that the resulting estimator is Fisher

consistent at the Gaussian model.

We still have the constant k at our disposal. It determines I

the trade-off between resistance and efficiency. For k=5.77 the

asymptotic variance of our estimator of at the standard Gaussian

model (i.e. both the error distribution and the carrier

distribution are standard Gaussian) is 1.05 -- or the efficiency is

95%. This appears to be a reasonable normalization.

3.1 ASYMPTTIC NUMBERS

The sampling situation we take into consideration are

polyGausuians of the form.7

,2 (6/V2)3.2

(1-4) N(.1) + a N(OV 2 ) (3.3)

and will be used both as a model for errors as well as carriers.

Table 3.1 contains the values of the asymptotic variance for

the regression estimator under consideration.

* .*-..onsisten.. . .***the***au'sian***odel . ......... . ... -.. , ,
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Table 1: asymptotic variance of b (see (2.3)). (61h:12 refers to

2the carrier distribution, (62/% denotes the error distribution

(see (3.3))

2

sl/:l2 N(0,1) 0.1/9 0.1/25 0.05/100

N(0,1) 1.05 e  1.33 1.39 1.16

0.1/9 0.71 0.90 0.96 0.79

0.1/25 0.55 0.69 0.74 0.61

0.05/100 0.77 0.97 1.03 0.86

(These values were computed numerically with a 24-point Gaussian

quadrature procedure)

0: normalization as discussed above

Since the covariance estimator (2.3) has bounded influence if

used with the weight function (3.2) its asymptotic behavior depends

on the distribution of the carriers. Table I shows that this

dependence is quite remarkable. The first column combines standard

Gaussian errors with increasingly heavy tailed carrier

distributions. The least squares estimators are of course optimal

in these situations with asymptotic variances of 1.00, 0.56, 0.29,

and 0.17 . The asymptotic efficiency of our estimator in these

situations is therefore 95%. 79%. 53%. and 22%. It appears that the

.. .o..-
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normalization of bounded influence regression estimators is a non-

trivial matter if we want to achieve a fair comparison with

estimators which do not treat outliers in carrier space any

differently. Most of the information about the slope parameter .

(see (3.1)) in the first column of Table 3.1 lies exactly in the

points far out in carrier space. Disregarding this information

results in a big loss.

Naronna, Bustos and Yohai (1979) give tables similar to Table

I for a Mallows-type estimator and the Hampel-Irasker estimator.

Table ZI shows the numbers for the Mallows estimator -- the Hampel-

Krasker estimator behaves similarly, but a bit worse overall

because of our normalization (the Hampel-Krasker estimator is the

emost robust" if we normalize this way!).

Table II: asymptotic variance of Mallows estimator with Huber

weight function, (el/l2) refers to the carrier distribution,

22

1s2/:2) denotes the error distribution (see (3.3)),. '

82/:?2

2
$ .111 14(0,1) 0.119 0.1/25 0.03/100

N(0,1) 1.05 1.42 1.61 1.42

0.1/9 0.66 0.86 0.98 0.86

0.1/25 0.46 0.59 0.66 0.59 "
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0.05/100 0.36 0.45 0.51 0.46

Table II contains the efficiencies of the Mallows estimator with

respect to the covariance estimator (2.3).

Table III: (asymptotic variance of covariance estimator)/

(asymptotic variance of Mallows estimator). (ai/12) refers to the

carrier distribution, (82/ 2 ) denotes the error distribution (see

(3.3)1 ,

a1 /c1  j N(0.1) 0.1/9 0.1/25 0.05/100

N(01) 1.00 1.00 0.97 0.92

0.1/9 1.06 1.07 1.05 0.99

0.1/25 1.17 1.15 1.15 1.07

0.05/100 2.03 2.02 1.98 1.89

As the carrier distribution gets heavier tails the covariance

estimator is outperformed by the Mallows estimator. But in most

cases the relative loss compared to the Mallows estimator is not

serious.

It should be noted that the robust estimator based on

covariance is not intended as a replacement for other bounded

p. o

... .. ... .. ... .. ... .. ... .. .... . . 9
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influence fitters. Its weight function (see (2.4)) has the

appealing feature that the response variable and the carriers are

interchangable. All possible choices of 'the response' can be

easily fitted. In some situations this can be helpful.

Table IV finally shows the gross-error sensitivities of the

different estimators together with their asymptotic breakdown p

points. The gross-error sensitivity is defined as the maximum of

the (Euclidian norm) of the influence curve (see Hampel (1974)) and

therefore serves as a description of the behavior under deviations

from the central model. In a sense we could call these our tools of

measuring the resistance of the estimators.

Table IV: gross-error sensitivity and breakdown point under

standard Gaussian error distribution. (elvl2) refers to the

carrier distribution (see (3.3))

estimators

Covariance Mallows Hampel-Krasker

|I breakdown points

0.16 0.31 0.50

e1/:1 gross error sensitivities

N(0,1) 3.34 3.40 2.94

0.1/9 2.86 2.66 2.22

0.1/25 2.63 2.15 1.73

A \ ,
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0.05/100 2.99 2.07 1.64

(for the last two columns see Karonna, Bustos and Yohai (1979),

Table 4)

The asymptotic optimality property of the fampel-Krasker

estimator is clearly visible in Table IV -- that particular

estimator minimizes the gross-error sensitivity under a fixed

asymptotic variance (all of this at the central model). This is

exactly the reason why we are interested in using it.

3.2 RESULTS OF A SIMULATION EXPERIMENT

Table V contains empirical variances of the regression

estimators (2.3) for samples of size 20. The weight function u() is

described at the beginning of Section 3 and the model is described

in (3.3).

Table V: empirical variances of a1 /2 b (see (2.3)) for samples of

size n-20, (el/vl 2 ) refers to the carrier distribution. 162/%2

denotes the error distribution (see (3.3))

I2
62/T2

.*.*.*'*"*.. *..°*
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26i'Ti N(0.1) 0.1/25 0.05/100
*" 1

N(0,1) 1.17 1.88 1.61

0.1/25 0.69 1.16 0.94

0.05/100 1.14 1.34 1.14

0.1/100 0.57 0.94 --

(The numbers in this table are based on 500 replicas and the

estimated relative errors are between 9% and 15%)

A comparison with Table I shows that the asymptotic variance

is in all situations lower than the actual small sample variance.

But otherwise the pattern in these estimated variances follows the

behavior of Table I. We do not have the corresponding numbers for

the Mallows estimator. A look at Table 5 in Maronna, Bustos and

Yohai (1979) shows, however, that the step from asymptotic

variances to small sample values very closely follows the behavior

we have seen in our numbers. It therefore appears that the

asymptotic theory is a good enough approximation to the small

sample (n=20) behavior.

As pointed out in Maronna, Bustos and Yohai (1979) the

distribution of the estimated regression coefficient is apparently

non-Gaussian in a lot of sampling situations. This makes the

comparison between different estimators more difficult since the

variance -- or mean-square-error -- might not be the criterion to
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use. From out simulation studies it appears that the distribution

of the slope estimator is heavier tailed that a Gaussian. This is

true in the case of the covariance estimator for either a

'contaminated' carrier distribution or a heavier tailed error

distribution.

We would finally like to point to a future research topic.

Donoho and Huber have recently pointed out the intuitive appeal of

the small sample breakdown point (see Donoho and Huber (1983) and

Huber (1984)) and it would be useful to study this aspect of our

estimators. In the case of regression these studies will not be

simple, however, since the breakdown point will presumably depend

on the actual carrier values.

4. CONCLUSIONS AND AN EXAMPLE

We have discussed an approach to robust regression estimation

based on robust covariance estimation. We have seen in Section 2

that if we adopt an affine equivariant N-estimator for the

covariance side, we do nothing else but a weighted least squares

approach on the regression side. The weights depend on two

quantities:

(1) standardized residual

(2) standardized norm in the carrier space.

Both of these are estimated robustly and the sum of their squares

is the quantity that matters. This particular form of the weight
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function is rather unique and symmetric with respect to the notions

aresponsel and 'explanatory'. This symmetry makes the choice

attractive. The covariance estimator fits a linear model to the

bulk of the data. Points far out in the space of explanatory

variables are identified as not belonging to the majority of the

data just as are points which do not fit the linear structure well.

This is the primary difference to other bounded influence methods

which try to identify only the second class of outliers.

Our particular estimator seems to downweights points far out p

in the carrier space too much. This can possibly be corrected by

using a different weight function.

Let us finally look at an example. We choose the stack loss -

data given in Daniel and Wood (1982, p. 61) involving three

independent variables

x1  air flow

x 2  cooling water temperature

and x3 = acid concentration.

The response variable is the stack loss. The sample size n is 21.

For our covariance estimator we use the weight function u(x) -

Pk(x)/x (x.O), where vk(X) = min(k, max(-kx)) is Huber's q-

function. The tuning constant k is chosen as 5.0.

On that particular data set the weights determined by the

covariance estimator after 20 iterations turn out to be small for

.. .. .................
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the first four and the last point. Figure I shows a plot of the

residuals of this fit against the first variable x1 . The weight is

indicated by the area of the point. We can identify the 5 outlying

points and we can also appreciate the comment made by Daniel & Wood

that one of these points fits the plane determined by the rest

quite well.

The final conclusion of Daniel and Wood is that X1
2 (or x1 z2)

should be included and that x3 can be dropped. Our analysis

supports those findings and in fact recovers the final fit given by

Daniel & Wood.

BIBLX:OGRAPY:

Daniel C. and Wood F.S. (1980): Pitting Equations to Data,

Wiley, New York.

Donoho D. and Ruber P.Y. (1983): *The notion of breakdown point".

in a Festschrift for Erich L. Lehmann, P. Bickel et al.

edts., Wadsworth, Belmont CA

Eampel, F.R. (1971): 'A general qualitative definition of robust-

ness*. Ann. Math. Statist., 42, 1887-1896

"ampel, F.R. (1974): 'The influence curve and its role in robust

estimation'. Y. Amer. Statist. Assoc., 62, 1179-1186

Handschin, E., Kohlas, I., Fiechter. A. and Schweppe. F. (1975):

"Bad data analysis for power system state estimation". IEEE

Transactions on Power Apparatus and Systems, PAS-94. 2.

329-337



K -

-27-

Huber, P.3. (1967): 'The behavior of maximum likelihood estimates

under nonstandard conditions'. Proc. Fifth Berkeley Sympo-

sium on Mathematical Statistics and Probability, Vol. 1,

Univ. of California Press, Berkeley

Huber. P.J. (1973): 'Robust regression: Asymptotics, conjectures

and Monte Carlo'. Ann. Statist., 1, 799-821

Huber, P.3. (1981): Robust Statistics. Wiley, New York

Huber, P.J. (1984): 'Finite sample breakdown of M- and P-

estimators'. Annals Statist., 12, 119-126 -

Krasker, W.S. and Welsch, R.E. (1982): 'Efficient bounded influ-

ence regression estimation'. 3. Amer. Statist. Assoc., 77,

595-605

Mallows, C.L. (1975): 'On some topics in robustness', unpublished

memorandum, Bell Telephone Laboratories, Murray Hill. N.J.

Maronna, R.A. (1976): 'Robust M-estimators of multivariate

location and scatter'. Ann. Statist., 4, 51-67

Maronna, R.A. , Bustos 0., and Yohai V. (1979): 'Smoothing

Techniques for Curve Estimation'. in Lecture Notes in

Mathematics, No. 757. Springer, Heidelberg

Mosteller, F. and Tukey, 3.W. (1977): Data Analysis and

Regression: A second course in Statistics. Addison-Wesley,

Reading, Massachusetts

Stahel, W. (1981): 'Robust estimation: infinitesimal optimality

and covariance matrix estimators', unpublished PhD thesis,

Swiss Federal Inst. of Technology, Zurich, Switzerland

. . ~ ~~~ .,.



* ---

, )4

-j 0 0•

I... . .

*- "

,00
* 0(03 0

.. *----

C)o .
-_,, ..... ... . , ,... . ,.; ., ..... .,,-: .',. . .,.. .' ," ...,.,,. .....,.. ..... ,,,. -,. ,. , ... , - .-.,

"--. . '''''"'" ._,' '.''_':. ,,._ , . .. - . - : .- .', , , ,.42 . . . . ,. .... _ '_ ,- . . ._... .



.- . . . . . .. . .

iNrT.AqTrTrnSECURITY CLASSITIN MASTER COPY - FOR REPRODUCTION PLRPOSESp SCURTY LASIFCATION OF THIS PAGEOn
r 

l~ Date Entered) TR?",T

REPORT DOCUMENTATION PAGE READ INSTRUCTIONSBEFORE COMPLETING FORMA
1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

0 o?/77?,-i,' N/A N/A
4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Technical Report
6. PERFORMING ORG. REPORT NUMBER

Robust Regression Through Robust Covariances

7. AUTHOR(*) I. CONTRACT OR GRANT NUMBER(s)

Stephan Morgenthaler and Ricardo Maronna DAAG29-84-K-0207

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMEERS

Statistics Center
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139 N/A

It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

U. S. Army Research Office January 1985

Post Office Box 12211 13. NUMSEROFPAGCS
Rpqparirh T4ia Pit 3'17927

14. MONITORING AGENCYlAME & ADdRErSSQI diftnla from Controlling Offic) 15. SECURITY CLASS. (of this report)

Unclassified

IS.. OECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

* 17. DISTRIBUTION STATEMENT (of Ch. abstract entered In Block 20, It dliferent bem Report)

NA

1S. SUPPLEM.4TARY NOTES

The view, opinions, and/or findings contained in this report are
those of the author(s) and should not be construed as an official
Department of the Army position, policy, or decision, unless so

of;, An hy ,rhoar ne,,mianat' 1nn
,15). KEY WOROS (Cffnu. on revesee aide It necessar and identify by block number)

Bounded Influence; asymptotics~and simulation,

21L AITACr Cia. m 1 .e it b Inewe ldenwilt by block number)

This paper describes a regression estimator which builds on the investigation of
the covariance structure in the full space of explanatory variables and response
variable. It is robust since it down weights outlying observations. A compari-
son to other robust estimators is included. o ..

DO ~A"N7 1473 UNoO oNovSsOUOLETE UNCLASSIFIED

S ECumTy CLASSIFICATION OF TIIS PAGE (hon Does Entered

. . . ..........................................................-.... . . . .



FILMED

5-85

DTIC


